Contents

PART ONE ■ OVERVIEW

Chapter 1 Introduction

1.1 What Operating Systems Do 4
1.2 Computer-System Organization 7
1.3 Computer-System Architecture 15
1.4 Operating-System Operations 21
1.5 Resource Management 27
1.6 Security and Protection 33
1.7 Virtualization 34
1.8 Distributed Systems 35

1.9 Kernel Data Structures 36
1.10 Computing Environments 40
1.11 Free and Open-Source Operating Systems 46
1.12 Summary 51
Exercises 53
Further Reading 57

Chapter 2 Operating-System Structures

2.1 Operating-System Services 59
2.2 User and Operating-System Interface 62
2.3 System Calls 66
2.4 System Services 78
2.5 Linkers and Loaders 79
2.6 Why Applications Are Operating-System Specific 81

2.7 Operating-System Design and Implementation 83
2.8 Operating-System Structure 85
2.9 Building and Booting an Operating System 95
2.10 Operating-System Debugging 99
2.11 Summary 104
Exercises 105
Further Reading 107

xvii
PART TWO ■ PROCESS MANAGEMENT

Chapter 3 Processes
3.1 Process Concept 112
3.2 Process Scheduling 116
3.3 Operations on Processes 122
3.4 Interprocess Communication 129
3.5 IPC in Shared-Memory Systems 131
3.6 IPC in Message-Passing Systems 133
3.7 Examples of IPC Systems 138
3.8 Communication in Client–Server Systems 151
3.9 Summary 159
Exercises 161
Further Reading 166

Chapter 4 Threads & Concurrency
4.1 Overview 168
4.2 Multicore Programming 170
4.3 Multithreading Models 174
4.4 Thread Libraries 176
4.5 Implicit Threading 184
4.6 Threading Issues 196
4.7 Operating-System Examples 202
4.8 Summary 204
Exercises 205
Further Reading 208

Chapter 5 CPU Scheduling
5.1 Basic Concepts 212
5.2 Scheduling Criteria 216
5.3 Scheduling Algorithms 217
5.4 Thread Scheduling 229
5.5 Multi-Processor Scheduling 232
5.6 Real-Time CPU Scheduling 239
5.7 Operating-System Examples 246
5.8 Algorithm Evaluation 256
5.9 Summary 262
Exercises 263
Further Reading 270

PART THREE ■ PROCESS SYNCHRONIZATION

Chapter 6 Synchronization Tools
6.1 Background 273
6.2 The Critical-Section Problem 276
6.3 Peterson’s Solution 278
6.4 Hardware Support for Synchronization 281
6.5 Mutex Locks 286
6.6 Semaphores 288
6.7 Monitors 292
6.8 Liveness 299
6.9 Evaluation 300
6.10 Summary 302
Exercises 303
Further Reading 309

Chapter 7 Synchronization Examples
7.1 Classic Problems of Synchronization 311
7.2 Synchronization within the Kernel 317
7.3 POSIX Synchronization 321
7.4 Synchronization in Java 325
7.5 Alternative Approaches 333
7.6 Summary 336
Exercises 336
Further Reading 338
Chapter 8 Deadlocks
8.1 System Model 342
8.2 Deadlock in Multithreaded Applications 343
8.3 Deadlock Characterization 345
8.4 Methods for Handling Deadlocks 350
8.5 Deadlock Prevention 351
8.6 Deadlock Avoidance 354
8.7 Deadlock Detection 361
8.8 Recovery from Deadlock 365
8.9 Summary 367
 Exercises 368
 Further Reading 374

PART FOUR ■ MEMORY MANAGEMENT

Chapter 9 Main Memory
9.1 Background 379
9.2 Contiguous Memory Allocation 386
9.3 Paging 390
9.4 Structure of the Page Table 401
9.5 Swapping 406
9.6 Example: Intel 32- and 64-bit Architectures 409
9.7 Example: ARMv8 Architecture 413
9.8 Summary 414
 Exercises 415
 Further Reading 420

Chapter 10 Virtual Memory
10.1 Background 421
10.2 Demand Paging 424
10.3 Copy-on-Write 431
10.4 Page Replacement 433
10.5 Allocation of Frames 445
10.6 Thrashing 451
10.7 Memory Compression 457
10.8 Allocating Kernel Memory 458
10.9 Other Considerations 462
10.10 Operating-System Examples 468
10.11 Summary 472
 Exercises 473
 Further Reading 482

PART FIVE ■ STORAGE MANAGEMENT

Chapter 11 Mass-Storage Structure
11.1 Overview of Mass-Storage Structure 485
11.2 HDD Scheduling 493
11.3 NVM Scheduling 497
11.4 Error Detection and Correction 498
11.5 Storage Device Management 499
11.6 Swap-Space Management 503
11.7 Storage Attachment 505
11.8 RAID Structure 509
11.9 Summary 521
 Exercises 522
 Further Reading 527
Contents

Chapter 12 I/O Systems
12.1 Overview 529
12.2 I/O Hardware 530
12.3 Application I/O Interface 540
12.4 Kernel I/O Subsystem 548
12.5 Transforming I/O Requests to Hardware Operations 556
12.6 STREAMS 559
12.7 Performance 561
12.8 Summary 564
Exercises 565
Further Reading 567

PART SIX ■ FILE SYSTEM

Chapter 13 File-System Interface
13.1 File Concept 571
13.2 Access Methods 581
13.3 Directory Structure 583
13.4 Protection 592
13.5 Memory-Mapped Files 597
13.6 Summary 602
Exercises 602
Further Reading 606

Chapter 14 File-System Implementation
14.1 File-System Structure 608
14.2 File-System Operations 610
14.3 Directory Implementation 612
14.4 Allocation Methods 614
14.5 Free-Space Management 622
14.6 Efficiency and Performance 626
14.7 Recovery 630
14.8 Example: The WAFL File System 633
14.9 Summary 637
Exercises 638
Further Reading 640

Chapter 15 File-System Internals
15.1 File Systems 643
15.2 File-System Mounting 644
15.3 Partitions and Mounting 647
15.4 File Sharing 648
15.5 Virtual File Systems 649
15.6 Remote File Systems 651
15.7 Consistency Semantics 654
15.8 NFS 656
15.9 Summary 661
Exercises 662
Further Reading 664

PART SEVEN ■ SECURITY AND PROTECTION

Chapter 16 Security
16.1 The Security Problem 669
16.2 Program Threats 673
16.3 System and Network Threats 682
16.4 Cryptography as a Security Tool 685
16.5 User Authentication 696
16.6 Implementing Security Defenses 701
16.7 An Example: Windows 10 710
16.8 Summary 712
Exercises 713
Further Reading 714
Chapter 17 Protection

- 17.1 Goals of Protection 717
- 17.2 Principles of Protection 718
- 17.3 Protection Rings 719
- 17.4 Domain of Protection 721
- 17.5 Access Matrix 725
- 17.6 Implementation of the Access Matrix 729
- 17.7 Revocation of Access Rights 732
- 17.8 Role-Based Access Control 733
- 17.9 Mandatory Access Control (MAC) 734
- 17.10 Capability-Based Systems 735
- 17.11 Other Protection Improvement Methods 737
- 17.12 Language-Based Protection 740
- 17.13 Summary 746
 - Exercises 747
 - Further Reading 749

PART EIGHT ■ ADVANCED TOPICS

Chapter 18 Virtual Machines

- 18.1 Overview 753
- 18.2 History 755
- 18.3 Benefits and Features 756
- 18.4 Building Blocks 759
- 18.5 Types of VMs and Their Implementations 765
- 18.6 Virtualization and Operating-System Components 771
- 18.7 Examples 778
- 18.8 Virtualization Research 780
- 18.9 Summary 781
 - Exercises 782
 - Further Reading 783

Chapter 19 Networks and Distributed Systems

- 19.1 Advantages of Distributed Systems 785
- 19.2 Network Structure 787
- 19.3 Communication Structure 790
- 19.4 Network and Distributed Operating Systems 801
- 19.5 Design Issues in Distributed Systems 805
- 19.6 Distributed File Systems 809
- 19.7 DFS Naming and Transparency 813
- 19.8 Remote File Access 816
- 19.9 Final Thoughts on Distributed File Systems 819
- 19.10 Summary 820
 - Exercises 821
 - Further Reading 825

Credits 827

Index 829