CHAPTER 1

INTRODUCTION

Background

In today's economy, where the economy is keep on growing and the business is always developing. Businessman and entrepreneur are required to operate more effectively and more efficiently to deal with greater competition in order to maintain sustainability of the company.

As the economy is growing, nowadays many property developer keep on creating and building new residences, apartment, even shopping malls. Many people are now interested in creating a beautiful house or place through wall painting. Paint company are now also offer many range of colours, some even offers up to 10.000 colours that the customer can choose.

UD. Sumber Mas is a sole proprietorship company that primarily engaged in paint products and other needs for painting. UD. Sumber Mas is located in Cengkareng, West Jakarta, and it is established in 2000. To support the business, UD. Sumber Mas employs 35 employees that divided into 2 workplaces which are the store and also the warehouse. UD. Sumber Mas is one of the biggest paint store in Jakarta and it has been awarded for it has the highest sales for some brands in Jakarta.

Since there are so many options for colours that the customer can choose, UD. Sumber Mas need to manage their inventory level wisely so that they can minimize the inventory cost, but still be able to meet the customers demand at the same time. Therefore, a balance between inventory level and inventory planning is an important factor.

Before buying inventory, UD.Sumber Mas always forecast the projection of demand, but this projection is only based on intuition and years of experience. Which sometimes:

- It will hold up the cash flow where all the money and capital is in a products form and result in the company not able to pay their payable to the supplier. This will cause the company got blacklisted from the supplier.
- Leads to overwhelmed warehouse, where there is no more space for other products to be stocked and may lead to customer dissatisfaction where the products that they want might not be available.
- A potential of expiring products, when it is stored too long.

Table below shows the comparison between the total demand and the total inventory in the company for Mowilex Emulsion E 100 (White), Dulux W/S Ws 1290 (Brilliant White), Nippon Vinilex Easy Wash 300 (White) from October 2011 – September 2015.

Table 1.1 Comparison Between Total Demand and Items Ordered From October 2011–September 2015

Items	Period	Inventory Stocks in Litres	Demand in Litres
MOWILEX EMULSION E 100 (WHITE)	October 2011 - September 2012	415.029	373.900
	October 2012 - September 2013	462.748	424.540
	October 2013 - September 2014	603.911	557.064
	October 2014 - September 2015	650.400	599.450
Dulux W/S WS 1290 (Brilliant White)	October 2011 - September 2012	562.927	526.100
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	October 2012 - September 2013	630.896	563.300
	October 2013 - September 2014	634.620	584.330
	October 2014 - September 2015	666.191	589.550
Nippon Vinilex Easy Wash 300 (White)	October 2011 - September 2012	255.484	202.180
	October 2012 - September 2013	266.890	201.080
	October 2013 - September 2014	297.260	296.500
	October 2014 - September 2015	367.114	303.400

Source: UD. Sumber Mas

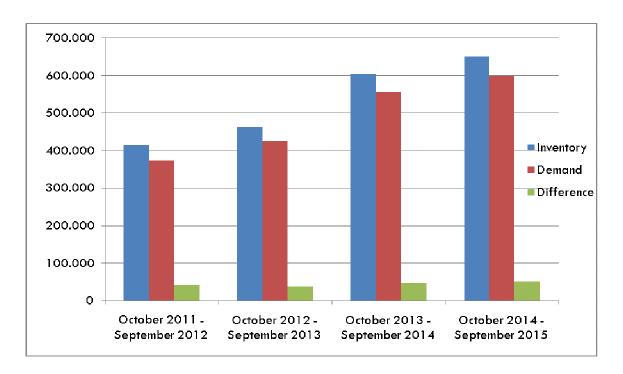


Figure 1.1 Comparison Between Inventory Stocks and Demand For Mowilex

Source: Author

Figure 1.1 shows that there is a quite high differences between the inventory stocks and demand for Mowilex Emulsion E100 (White). In October 2011-September 2012 there is41.129 litres differences between the inventory stocks and demand. There is 38.208 litres differences between the inventory stocks and demand in October 2012 – September 2013. In October 2013-September 2014, there is 46.847 litres differences between the inventory stock and demand, and 50.950 litres in October 2014-September 2015.

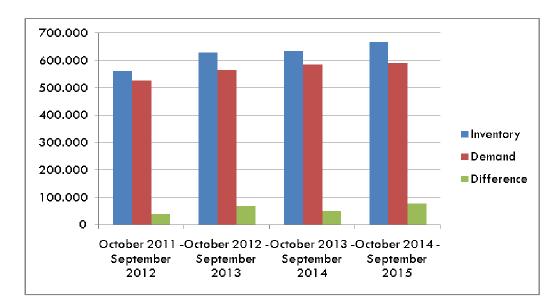


Figure 1.2 Comparison Between Inventory Stocks and Demand For Dulux

Source: Author

Figure 1.2 shows that there is a quite high differences between the inventory stocks and demand for Dulux Weathershield W/S 1290 (Brilliant White). In October 2011-September 2012 there is 36.827 litres differences between the inventory stocks and demand. There is 67.596 litres differences between the inventory stocks and demand in October 2012 – September 2013. In October 2013-September 2014, there is 50.290 litres differences between the inventory stock and demand, and 76.641 litres in October 2014-September 2015.

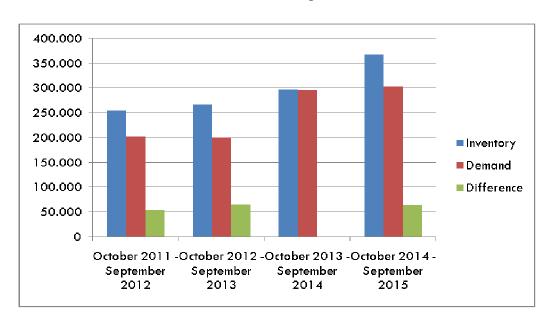


Figure 1.3 Comparison Between Inventory Stocks and Demand For Vinilex

Source : Author

Figure 1.3 shows that there is a quite high differences between the inventory stocks and demand for Dulux Weathershield W/S 1290 (Brilliant White). In October 2011-September 2012 there is 53.304 litres differences between the inventory stocks and demand. There is 65.810 litres differences between the inventory stocks and demand in October 2012 – September 2013. In October 2013-September 2014, there is 760 litres differences between the inventory stock and demand, and 63.714 litres in October 2014-September 2015.

Because of that, author is interested to propose forecasting model and economic order quantity model. There are 3 items that will be analyze in this research which are, Mowilex Emulsion E 100 (White), Dulux W/S Ws 1290 (Brilliant White), Nippon Vinilex Easy Wash 300 (White). Those items are the items that have the highest sales in UD. Sumber Mas. Forecasting will help the owner to predict the demand of customer more accurately and for economic order quantity it will help the owner to ordered the correct or the right amount of products, so it will reduce the overstock, and of course minimize the inventory cost but in the other hand owner still able to fulfill the customers needs and satisfy the customer.

Problem Formulation

Based on the background explained above, the problems that will be researched by the researcher are:

- 1. Which are the forecasting methods between naive, moving average, weighted moving average, exponential smoothing, exponential smoothing with trend, and Linear Regression that will give the smallest MAD and MSE?
- 2. How much is the optimal amount of products that must be ordered every period?

Objective of The Research

There are some objectives from this research. Which are:

1. To decide which forecasting methods between naive, moving average, weighted moving average, exponential smoothing, exponential smoothing with trend, and Linear Regression that will give the smallest MAD and MSE.

2. To know how much is the optimal amount of products that must be ordered every period.

Benefit of The Research

- A. For the company:
- As an additional information for the company's management in determining an
 effective and efficient inventory.
- As an input for the company's management for better estimation of demand, and minimize the cost of inventory.
 - B. For the author:
- 1. This research is expected to provide benefits and gain knowledge by comparing the theories studied in college with the reality in the company
 - C. For the reader:
- 2. As an information and reference in doing scientific research or as additional knowledge, especially in forecasting and inventory planning.

State of The Art

Table 1.2 State of The Art

Reserch	Journal	Author	Research	
Method	Description		Result	
Forecasting	International	Mathew, Nair, &	Forecasts of	
	Journal of	Joseph	future demand will	
	Scientific and		determine the	
	Research		quantities that should	
	Publications		be	
			purchased,produced	
			and shipped.In this	
	Volume 3, Issue		work α,two data	
	10, October 2013		mining	
			methods,artificial	
	Demand		neural network(ANN)	
	Forecasting For		and exponential	
	Economic Order		smoothing(ES) were	
	Quantity in		utilized to predict the	
	Inventory		demand of the	
	Management		fertilizer(Ammonium	
			Sulphate). The training	
			data used was the	
			sales data of fertilizer	
			of the previous 3	
			years.Demand	
			forecasted by artificial	
			neural network is	
			more accurate and	

			have less inventory	
			costs than exponential	
			smoothing method.	
Forecasting	International	(Sahu & Kumar,	Forecasting	
	Journal of	2013)	method assessed	
	Inventive		includes single	
	Engineering and		moving average	
	Sciences (IJIES)		(SMA), double	
			moving average	
	Volume-1, Issue-		method (DMA), single	
	9, August 2013		exponential smoothing	
			(SES), semi average	
	Demand		method (SAM) and	
	Forecasting For		Naïve Method. The	
	Sales of Milk		mean forecast error	
	Product (Paneer)		(MFE), mean absolute	
	In Chhattisgarh		deviation (MAD),	
			mean square error	
			(MSE), root mean	
			square error (RMSE)	
			is used to measure the	
			accuracy of	
			forecasting methods.	
			Based on accuracy,	
			single exponential	
			smoothing (SES) with	
			α =0.3 produces the	
			most accurate	
			forecasting.	
Forecasting	International	(Nenni,	Forecasting	
	Journal of	Giustiniano, &	demand is a crucial	

	Engineering	Pirolo, 2013)	issue for driving
	Business		efficient operations
	Management		management plans.
	Special Issue on		Poor
	Innovations in		forecasting effects are
	Fashion Industry		stock outs or high
			inventory,
	Int. j. eng. bus.		obsolescence, low
	manag., 2013,		service level, rush
	Vol. 5		orders, inefficient
			resource utilization
	Demand		and bullwhip
	Forecasting in the		propagating through
	Fashion Industry:		the upstream supply
	A Review		chain
Quantity	International	(Navidi &	The economic
Discount Model	Journal of	Bidgoli, 2011)	order quantity model
	Management		is a fundamental
	Science and		model in inventory
	Engineering		control that introduces
	Management		retailer's optimal
			strategy under some
	2011		conditions such as the
			unit cost of purchased
	An all-unit		product is constant
	quantity discount		and also the retailer
	model under a		and the supplier work
	Cournot		in a monopolistic
	competition with		market and the effects

	incomplete		of the behaviors of
	information		their competitors on
			their demand are
			ignored but in the real
			world, these
			conditions are hard to
			encounter
Economic Order	Int. J. Production	(Reazaei &	The
Quantity (EOQ)	Economics	Salimi, 2012)	relationship between
			buyer and supplier
	2012		with regard to
			conducting the
	Economic order		inspection and
	quantity and		resulting in a change
	purchasing price		the buyer's economic
	for items with		order quantity and
	imperfect quality		purchasing price. We
	when inspection		model and analyze the
	shifts from buyer		problem under two
	to supplier		conditions: (1)
			assuming there is no
			relationship between
			the buyer's selling
			price, buyer's
			purchasing price, and
			customer demand; (2)
			assuming there is
			relationship between
			the buyer's selling
			price, buyer's
			purchasing price, and

	customer	demand.
	Numerical	examples
	are prov	ided to
	illustrate the	models.