CHAPTER 2.
LITERATURE REVIEW

2.1 Software Engineering
Software Engineering is one kind of type enginegtimat have some several
aspects which included a process or method to dota@wis to build high quality
computer-based system/ computer-software with aifgpe time (Pressman &
Maxim, 2015, p. 14).
According to Pressman, Software Engineering halegers:
1. Quality Focus Layer
Software Engineering should be focus on quality sofftware,
especially in organizational customer quality reguoients, developer quality
requirements, users’ requirements, etc. best peadt quality focus layer is
when a software that meet the all of the requirdm@éeeded or meet its
specification.
2. Process Layer
Process layer is a foundation of Software EngimgerProcess Layer
become a connector all of the other layers whichlccancreasing rate of
finishing the software on time that has been sptibefore with proper time
spent.
3. Methods Layer
Methods Layer act as technical guidance of SoftwEmgineering.
This layer covers several main aspects which arquirements analysis,
design modeling, program constriction or codinggtitey, and maintenance
phase of software development.
4. Tools Layer
Tools Layer acts as supporter which provides fometiity to process
and method layers. Some combination of tools cdiddome referred to
Computer-Aided Software Engineering (CASE). CASEnbimes software,

hardware, and database for development.

2.2 Software Process Framework
Software process is one kind of the most importiinigs to develop software.
Process could be described as collection of aetsviatnd action that perform some
work to create something (Pressman & Maxim, 2015164). Process frameworks
establish a foundation to create software from ingtfito kind of finished product.
Process framework for software engineering couwtldi5 main activities:
1. Communication
This step is critical aspect of starting a softwprecess because in this
step communication is one to understand betweetoroes (individuals or
stake holder) what is the requirements to helpnéeéll of the feature and
function of a software.
2. Planning
Planning could become a guideline for creator tgprad of possibility
technical task to be conducted, what risk will l#pened, and all of the
resource that are needed to develop into next step.
3. Modeling
Creating a basic sketch of the software, takinggapicture to implement a
function on software and its better when the moadalketch is more detail.
4. Construction
Implementing of modeling activity as a real prograith its all functionality.
5. Deployment
The software is ready to deliver to customer algfiothe program is partially
finished or completely finished. After deploymemhe software could be

revised or getting feedback by customer.

2.3 Software Development Life Cycle (SDLC)

Software Development Life Cycle (SDLC) is used aftware engineering to
describe all of process of software developmentphfipg activities and defines
process flow with some different model to implement

2.3.1 Spiral Model

Spiral model is originally proposed by Barry Boehwhich is an
evolutionary of iterative prototyping. Spiral modgirovides for fast
development to enhance complete version of thevaodét (Pressman & Maxim,

2015, p. 47). Adaptation is one of the keys forapnodel. It can be adapted

throughout entire development process. Spiral mddelis on risk-driven
process model that guide multi-stakeholder to esgjirsoftware system. One
cyclic approach for growing system could decreasiegree of risk. Spiral
model also part of evolutionary process models, civhis produce an

increasingly more complete development versioroitirvare for each iteration.

—F

Deployment

Medeling

desian

Construction

defivery

teedback
baeh

Figure 2.1. Spiral Model
(Source: Software Engineering, Pressman & Maxim, 2Ib, p.47)

There are 4 main process of Spiral Model:

1. Communication
Communication is the beginning to identify the regonents. In this
process, requirement gathering is the most impbnpant, identify all
aspect of requirements. From business sight, wihatntain point of
developing a project and determine the cost, tene, resources for each
iteration.

2. Modelling
Analysis all information that gathered from commuation process.
Considering risk process and determine alterndivebetter solution.
Modelling also considers about design. Creatingdésign that help to
build a software such as: prototyping, which helgive a big picture of
software would be.

3. Construction
Implementation of modelling process that creatauach of code which

perform as it modeled. All of functionality haslie based on design that

10

has been created before. Construction also consistsst which test,

verify, and validate the code. Test is importantiake sure that the code

is working well on usage.
4. Deployment

Deployment process is when all of functionality ttrgathered from

communication to construction is deliver to thessticustomer. In this

case, feedback from customer is the most impornpant to revise or
construct for the next cycle of iteration.

Spiral model starts its process clockwise directiostart from
communication process framework and beginning atcénter. First circuit of
spiral model give earlier stage of result developimsuch as: product
specification which is planning result to adjustst@nd schedule based on
customer. After the process, it will adjust alltbé number of iterations required
to complete develop a software. Earlier stage evhittve spiral model could be
much like a prototype and the next iteration cobktome more complete
module version of the system that will be engindere
Spiral model can adapt throughout the life of tbenputer software. First circuit
represent a concept of development software sygissject. Each iteration
makes perfect of the module inside the softwaréesysContinuous iteration of
spiral model could be a process to enhancementfolare system of product
enhancement project.

The most flexible and it realistic model of SDLCchase it takes from
the iterative model combined by structured develepinThis model considering
all of the risk analysis that could be happen. \&aifé development pass through
four stage over and over, make a spiral conditiuil the process is finished.
There’s several advantage using spiral model asCSBdcause it adapts easily to
evolve of process progress. Developer and custewvilereact better to risk of
evolutionary level. Spiral model using prototypiag risk reduction and also
maintain the systematic of development step by sfgmoach. It could act as
consideration of technical risk, so the problensoftware system development
could be predicted and not become problematic.

Beside its advantage, the other hand, spiral matdel has disadvantage
especially relation with customer. If, the projatgvelopment is in contract

situation, it demands risk assessment expertise¢hasd experts will consider for

11

success of development. Major risk will occur ipextise fails to determine the
risk. Another thing, if development is fixed-budgéts hard to determine the
cost because each circuit is completed, project shsuld be revised and
revisited. (John, Jackson, & Burd, 2012)

2.4 Database Management System
Database Management System is a software systerhetips people to define,
create, maintain, and control all of access to e (Connolly and Begg, 2010,
p.66). DBMS is a software that connecting userabase with application program.
It also helps the programmer access and use the safa while managing data
integration. DBMS provide several features to use:
1. Data Definition Language (DDL)
DDL gives an ability to user for creating variataed its data type. It also
helps to design structure of database that wilis®efor the next step.
2. Data Manipulation Language (DML)
DML gives some ability to user to perform CRUD. CRWtands for Create,
Read, Update, and Delete data from database.
3. Data Control Language (DCL)
DCL gives ability to user for dealing about perrioss and other controls of
database system
4. Transaction Control Language (TCL)

DCL gives ability to user for dealing transactiorthin database.

2.5 Entity-Relationship Diagram (ERD)

Entity-Relationship Diagram (ERD) is a model analysf a data entities,
attributes, and the relationships among the dattitiesn that needs to store
information in data storage (Satzinger, 2012, p). 9%tually, ERD similar to
Unified Modeling Language (UML) but have their ofumctionality.

ERD has main point of usages which are to deterrdatabase design where
the requirements that have gathered implement tO ERRusing what are database
likely to be displayed. ERD also could help anaigzihe problem more convenience
because of we know the basic database or the datalesign of the program.
According to Satzinger, ERD has several importamhgonents to know. Rectangle

represent data entities and lines between rectargllew the relationship between

12

data entities. Symbols on a line have a specifiammg to describe what the

relationship between entities is.

Cusiomer Account Branch
cuel number-PK accouni ID=-PK branch 1D =PK
name ACCOon] fype Manager namea
bill address - | { date cpened ;O_l_ locaton
hame phans halancs main phone
aflice phane

—
Transaction
trang ID=-PK
Wrans dabhe
Lans bype

rang amount

Figure 2.2 ERD for bank with many branches
(Source: Systems Analysis and Design, Satzinger,12) p. 100)

Rectangle that represent a data entity have soopeqres on it. Data entity
is an object that are break down into smallest fizath property or attribute is used
to represent data entity. Example from above, Quetodata entity. Customer has
several properties such as: cust number, nameatidress, home phone, office
phone. Beside cust number, there’s a symbol ofvitch means Primary key. Each
data entities should have a Primary key for deteeniis uniqueness. Primary key is
critical concept to have for ERD, without it, ERDillwbecome complicated and
confusing because it makes hard to determine wisidbreign key and at the end,

relational database concept will not work.

Exactly one (mandatory)

Zero or more (optional)

”

e
Figure 2.3 Cardinality symbols of ERD relationships
(Source: Systems Analysis and Design, Satzingef12, p. 99)

13

This is a symbol of relationship for each rectangldeft line with a strip on
it represents exactly one or have to be one idaioaship. A right line with circle
and crow’s feet represent zero or more relationshipch is it could be nothing, one,

or more than one of data entities.

+o——<

N

One or more (mandatory)

Zero or one (optional)

Figure 2.4 Cardinality symbols of ERD relationships2
(Source: Systems Analysis and Design, Satzingef12, p.99)

For this left line with strip and circle on it sywilize that zero or one
relationship, which is could be nothing at all areorelationship of data entities. A
right side of line with a strip and crow’s feet bmepresent one or more relationship

of data entities, zero or nothing is not alloweddata entities relationship.

2.6 Unified Modeling Language (UML)

UML is based on Object Oriented concepts that doedgsigned for one

particular Object-Oriented Programming Language. LURBn be used for all
software development from various condition suctcamplexity, real time, volume,
etc. (Seidl, Scholz, Huemer, & Kappel, 2015, p. 14)
In UML, a model is represented into diagram. Thdisgrams will show users use
the functionality and showing the structure of thestem development without
specifying detail concrete implementation (Seidih@z, Huemer, & Kappel, 2015,
p. 15).

In general, UML define to two major kind of UML djeem: Structure
diagram and Behavior diagram. Structure diagramag@xpstatic structure, which
describe all of elements is related with each o#tmer represent meaningful concept
of the system. The other hand, behavior diagrama@ the details of behavior

which affect how states of object changer over time

14

2.6.1 Use Case

Use case is a fundamental concept of Object-OrdeRt®@gramming
that defines all of possible usage scenarios. [esgrin simple method that
cover who using the system, what is being descrinedystem, and what
action that user will be able to do with the systémshorthand, use case will

describe all of the functionality of the system eleped.

Table 2.1 Notation elements for use case diagram

No | Symbols Description

1 A use case describing what is the
function is expected to perform. |t
described as ellipse with simple and

clear action description in it.

Title Automation boundary is the
boundary that separate between use
case and actor. Separate who will
operate the system and what system
ability to do with actor action.

Automaton boundary described |as

154

vertically rectangle with title. Title

describes the name of system.

3 Stick figure represent an actor |or
user in the use case diagram. Agtor
or user represent the actual person
who using the system. A stick figure
should be named to know who |is
user exactly is the user of the system,
could be customer, administrator, |or
etc. User or actor should always

outside from automation boundary |of

15

No

Symbols

Description

the system. An actor isn’t always
human, but non-human also such

e-mail server.

A line is the most commo
relationship that represent

connecting between user or ac
with the system on specific action

case.

tor

or

An arrow line symbolizes as

generalization or specialization.

Could be used between actors
between use case. Sub actor or
use case is inherit from its pare
and has another ability to do

perform something special.

=)

or
sub

nt,

K includes D

>

A dashed arrow with <<includes>>

is a relationship between cas

which is original case is not

complete without included on

<<includes>> relationship. It defings

that from A use case is should

executed to perform B use case

<< Extend »)»

A dashed arrow with << Extend >>

is a relationship between cases that 1

use case is optionally dependently

on

another use case. Which means

extended use case is could be don

not done at all.

e or

16

o >0

,1‘/ ‘l \

\/

_/
V)
A
()

N |
o ja—
=>H0
R -

Figure 2.5 Relationship in use case diagram

(Source: UML@Classroom, Seidl, Scholz, Huemer, &p&, 2015, p.33)

Explanation:

1.

Use case A includes use cases of E and D. Actoerfnmn 3 uses
case. If actor O perform use case A, that meanscases E and D
should be executed too.

Use case H inherits from use case C and actor LlgHme perform
use case H by doing use case C. Actor N and M biéisydo do the
same as L does because of N and M are the gemgi@inf L which
is has same ability to perform C.

Use case J is inherit from use case B. Actor Occdirectly access to
perform B and J use cases. In this case, two actdi®e role O are
involved on execution of J.

The use case F inherits from the use case G. Assaltrof the
inheritance relationship, an actor N is involvedhia execution of use
case F. For F, an association with the actor lisis amodeled directly.
Therefore, an actor N and, due to the inheritaetationship of the

actors L, N, and M, either an actor L or an actooivan additional

17

actor N is involved in the execution of F. Use cheg&tends use case
F because use case F inherits from use case Gsahdxéends use
case G, relationship will be passed on to F.

Use case | extends use case F because use caeriksifrom use

case G and as | extends use case G, relationshipewassed on to F.
Use case J extends the use case H because réigtiohsnheritance

from B to J and from C to H.

2.6.2 Use Case Description

Use case description is a use case that ensuestoilie use cases as

clear and concise as possible. It also helps taawg comprehension of

system and clearly described statement for useqsirements.

Alstair Cockburn presents structured that has tothere on use case

description:

1.

© © N o o M 0N

Name

Short description

Precondition> prerequisite for successful execution
Postcondition> system state after successful execution
Error situation> error relevant to problem domain
System state on occurrence of an error

Actor that communicate with the use case

Trigger > event that start the use case

Standard proces? individual step to be taken

10. Alternative process> deviation from standard process

18

Table 2.2 Use case description for Reserve lectunall

Name:

Reserve lecture hall

Short description:

An employee reserves a lecture hall at the university for
an event.

Precondition: The employee is authorized to reserve lecture halls.
Employee is logged in to the system.
Postcondition: A lecture hall is reserved.

Error situations:

There is no free lecture hall.

System state in the event
of an error:

The employee has not reserved a lecture hall.

Actors:

Employee

Trigger:

Employee requires a lecture hall.

Standard process:

(1) Employee selects the lecture hall.

(2) Employee selects the date.
(3) System confirms that the lecture hall is free.
(4) Employee confirms the reservation.

Alternative processes:

(3") Lecture hall is not free.

(4") System proposes an alternative lecture hall.

(5’) Employee selects the alternative lecture hall and
confirms the reservation.

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kapel, 2015, p.36)

This description shows of the use case Reverseré&diall in a
student administration system. All of conditiontbis use case is considered.
Starting from the process, alternative process,orersituation, and
postcondition occur. For example, it could be dussto reserve a lecture
hall where an event is already taking place—thigesasense if the event is
an exam that could be held in the lecture hall glevith another exam,
meaning that fewer exam supervisors are require{SScholz, Huemer, &

Kappel, 2015, p. 36).

2.6.3 Activity Diagram

Activity diagram is a diagram that describe a pdusal processing of
a system. Which means, explain all about contawfand data flow step by
step that required to implement an activity (Sestlholz, Huemer, & Kappel,
2015, p. 141).

Table 2.3 Notation elements for activity diagram

Name | Notation | Description

Acton nde e
Activity node Activity Activities can be broken down further
Initial node | |Smn of the execution of an activity

Activity final node

End of ALL exccution paths of an ac-
tivity

Flow final node

End of ONE cxccution path of an ac-
tvity

Decision node

Splitting of one execution path into
two or more alternative execution
paths

Merge node

Merging of two or more alternative
execution paths into one execution

path

Parallelization node

Splitting of one execution path into
two or more concurrent execution
paths

Synchronization node

Merging of two or more concurrent
exccution paths into one execution

path

Edge

Connection between the nodes of an
activity

Action A refers to an activity of the

Call behavior action A - .
same name
:) " Contains data and objects that are cre-
Object node Object ated, changed, and read

Parameters for activi-
lies

Contain data and objects as input and
outpul parameters

Parameters for actions
(pins)

Contain data and objects as input and
output parameters

19

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kpapel, 2015, p.165)

20

Table 2.4 Notation elements for activity diagram pet 2

Name | Notation | Description
AR« Grouping of and ithi
Partition Poupeag o nodes edges within
@ an activity

Send signal action

Transmission of a signal to a receiver

Asynchronous accept
(time) event action

Wait for an event E or a time event T

Exception handler is executed instead

MEcepiet hender of the action in the event of an error €
Interruptible activity Flow continues on a different path if
region event E is detected

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kapel, 2015, p.166)

21

Student Employee

Request Create
ID 2 1D
Fill out
ID
"Hén&b\}ér”w (Check
documents remaining
and ID documents

NotOKk]

H

Destroy [NotOKk]
ID
[OK]

Stamp
ID

> Receive < |

semester label

Affix
label

Figure 2.6 Activity diagram “Issue student ID”
(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kapel, 2015, p.163)

This is activity diagram for Issue Student ID usese& From the
beginning of initial state symbol, Student startéquest ID, then Employee
creates ID for student. Student fill out the ID agidng all of the document
required and the ID to employee. Employee will ¢heébe remaining

documents and hand over back the document. If dentire not appropriate,

the activity will be ended, but if it's ok, emplayevill check the ID. The ID
will be check either ok or not ok. If it not ok, Iill be destroyed and re-
create the ID, otherwise employee will stamp the Then student will
receive semester label and affix the label. Aftéx @he label, it will end the

process of activity diagram.

2.6.4 Class Diagram

Class diagram is static structure that describesefements of the
system and its relationships between them (Seatipl8, Huemer, & Kappel,
2015, p. 49). Class diagram could help creatingceptual view of the
system. In class diagram, there’s several aspeatsstimportant to recognize.
An object that has several attributes and methogelsorbe a class and

relationships between classes.

Course
Course
(a)
+ name: String
+ semester: SemesterType
Course - hours: float
- /credits: int
name + getCredits(): int
semester + getlLecturer(): Lecturer
hours + gelGPA(): float
+ getHours(): float
g::&z:ﬂt;(r)() + setHours(hours: float): void
etGPA
g9 () (C)
(b)

Figure 2.7 Representation of a class and its chareistics
(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kapel, 2015, p.53)

Table 2.5 Visibilities

Name |Symbol|Description

public + Access by objects of any classes permitted

private - |Access only within the object itself permitted

protected - Access by objects of the same class and its subclasses
permitted

package ~ |Access by objects whose classes are in the same pack-
age permitted

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kapel, 2015, p.59)

23

From figure 2.7 section Adefines an object that become a title of
each class. Section $hows each class has several attributes or prepeti
and methods that defines of Course class. Sectisho/s the complete of
one class diagram, which defines all of attributesthod, data type, return
type, and access modifier.

Associations is relationships between classes m@t@hmunication

between classes occur defined as several conapuithbe describes below.

Table 2.6 Notation elementes of the class diagram
(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kapel, 2015, p.84)

Name | Notation |Description
A

-al: T Description of the structure and be-

Class -a2: T2 : X 3
- havior of a set of objects

+ 01(): void

+ 02(): void
Abstract class ("":‘“) Class that cannot be instantiated

Relationship between classes: navi-
gability unspecified (a), navigable in
(b) both directions (b). not navigable in

Association

one direction (¢)

n R n Relationship between N (in this case

n 3) classes

Aot iation clien : More detailed description of an asso-
E ciation

N-ary association

An object of A is in a relationship
with an object of B or with an object
of C but not with both

xor relationship

Existence-dependent parts-whole re-
Strong aggregation = lationship (A is part of B; if B is
composition deleted, related instances of A are also
deleted)

Parts-whole relationship (A is part of
Shared aggregation n & n B: if B is deleted, related instances of

A need not be deleted)

Inheritance relationship (A inherits
from B)

Generalization

Instance of a class

Link

Object |
| |Relationship between objects

25

{abstract)
Employee

Facult
+ ssNo: int L leads » 0.1 y

+ name: String | *dean
+ email: String

+ name: String

+ counter: int 1
A R
/
/ \ 1.*
Administrative Research Institute
Employee Associate 1.% 1%
+ fieldOfStudy: String + name: String
+ address: String
A
- &
Participation
=~ + hours: int
Lecturer
1.%
Course bacheé Project
1.* v |
+ name: String + name: String
+id: int + start: Date
+ hours: float + end: Date

Figure 2.8 Class diagram of the information systerof a university
(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kapel, 2015, p.80)

This is a class diagram for information system aofivarsity could be
described as:
1. Administrative employee class and Research Assoakss inherit
from abstract class of Employee.
2. Employee abstract class leads zero or one faauthgrwise faculty is
leaded by 1 employee.
3. Research associate class is part of instituteftiagtitute was deleted,
related instances of Research Associate doesré twelve deleted.
4. An Institute class is part of faculty, which meérhere’s no faculty
class, Institute class will be deleted also becafigis composition.
5. Lecturer class inherit from Research Associatesclascturer teaches

one or more courses and course will be taught dayrthore lecturer.

26

6. Research Associate class has zero or more Prdgsd, otherwise a
project has 1 or more Research Associate class.

7. There's association class called Participationsclzetween Research
Associate class and Project class which more deéé¢sitription of an

association class.

2.6.5 Sequence Diagram

Sequence diagram describes kind of interaction é@tvobjects with
full specific task. It will describe like a readalflow or chronological order
of information or message. Sequence diagram cant@meral main points:
lifeline that shows time occurrence to interactcommunicate with other,
types of massage (synchronous, asynchronous, respoassage, and create
massage). Chronological information usually stémsn top to bottom, but
with help of controller structure, it will enable sequence diagram to control

the interaction.

lecturer :Professor lecturer
:Professor
| | i
I I I
| | |
| | |
I I I
| I |
| | |
(a) Role (b) Class (c) Role/Class
lecturer(i] :Thread self
:Professor
I I
I I
I I
I I
I I
I I
I I
(d) Multivalued (e) Active object (f) self

role

Figure 2.9 Type of lifelines
(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kapel, 2015, p.109)

Each rectangle has their meaning. In general, mgtgaplays their
important role as an actor or class name. Expnessiicates the name of the
role and the class of the object is connected thi¢hlifeline. Semicolon on

the name inside the rectangle can be omitted $fsalsn’t admitted.

27

sd Database Access)

:Application :Database

Send : :
- event ™ | getData() !
3 Execution
ol L x=geData specification
X, Receive 2y |
7]

event |

|
|
I
processData(x) :
|
|
|
I

Interaction partners

Figure 2.10 Structure of a sequence diagram
(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kapel, 2015, p.110)

Sequence diagram database access has 2 class: gpplication and
Database. Application and Database have theiméelith object activation.
Active object is occurred when application or datb is interacting each

other, whether it send an event or receive an event

Table 2.7 Notation elements for the sequence diagra

Name

Notation

I Description

Lifeline

r.C %
A
[
I
[
I

-—— ——

Interaction partners involved in the
communication

Destruction event

Time at which an interaction partner
ceases 10 exist

Combined fragment

Control constructs

Synchronous message

Sender waits for a response message

——]

Response message :,_] _____ E Response to a synchronous message
Asynchronous mes- :1 :] Sender continues its own work after
sage — sending the asynchronous message
Lost message I Jost Message to an unknown receiver

|

I
Found message found | Message from an unknown sender

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kppel, 2015, p.140)

29

-Student E-Leaming ‘Database
System
| | |
| loai : | I
} ogin(user, pw) - |
| | |
| l check(user, pw |
| ' (Pw) >
| | |
: l check: "ok”" J
| i |
I H :n kn i |
| ___login:"ok" . .
| | |
l etCourses l l
I 9 0 » |
| | |

Figure 2.11 Sequence diagram
(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kapel, 2015, p.137)

This is an example of login process sequence diagiehere are 3
interaction partners where involved in the inteact student, E-learning
system, and the database. When student want to ilo@i the system, student
send a massage or input their credential into theakhing system. The system
will check the credential by querying databasehéf data exist it will response
verified access to the system and giving a resptinaser if their credential is
verified by system. Student will be able to do ithe next step. In this case,

the sequence diagram isn’'t considered when studpuat the wrong credential.

2.7 Eight Golden Rules

Eight Golden rules is a standard rule that crehte@hneiderman to describe
about planning or analysis great interactive desigroftware program. According
Shneiderman, A system that has interactive desigidchelp productivity of user,
frustation free Ul, and user-friendly. Which is,efi® components help user to
understand better about the software an knowingendeeply about it. These are
eight golden rules:

1. Strive for consistency
Consistency is the important part for user to kneach page or

several group of pages that don’t make user cortftusise. For example, the

30

display, color choices, font usage, location ofilattes that connecting page

to page.

. Cater to universal usability

Interface designer has to know about all of uses we this program,
calculating all of the possibility who will be ustis program from
background, age, beginner, expert, and others.r Aft®wing all of that
aspect, interface designer has ability to develegieb design, for example
give a multiple choice of language inside the paoyr giving shortcut for

people who expert in this software field.

. Offer informative feedback

Informative feedback happens when a user intemgctith the
program, and the program is responding to usepmctRespond from the
program could be a message such as: success, fageding, etc. But, in
several cases, responds also could be as interelwdnEage. These responds
give user ability to know when his/her action isgqated by program.

Design dialogs to yield closure

Creating step-by-step action to achieve the tar&milar to offer
informative feedback but it gives an ending tatbat user has accomplished.
Grouping beginning action, mid process, and endaugion has been
organized easily to be aware by user.
Prevent error

Design all possibility of program that won’'t meetae, bug, or crash.
Error could be disaster for a program, becaus®atsd't work well what it
should. Also, when user which either beginner gpeek doing something
wrong in the process to program, designer has ¢evkmow to prevent error
by giving a clue to user for example. Email fielor fexample, it should
contain “@” symbol or has to be confirmed, if usleresn’t put the correct
format or account, program has to respond thathsemade a mistake.
Permit easy reversal of actions

Reversal of action could be described as whenwaat to cancel to
do something, program has ability to back to presi@ction, similar to
“undo” function. For example, user create new taatisn of buying product,
at several time, user doesn’t want to buy and wamtancel the transaction.

So, program has to have ability to cancel the &atisn.

31

7. Support internal locus of control
A system that has been created which has abilitysbomize by user.
User has access to control anything in that progr@m user experience
valuation could be increased based on customizabbram.
8. Reduce short-term memory load
Giving user to use program easier when user giiipgt to system.
So, input from user could be stored in program, alsd give a menu that’s

not too complex, because it will give user confodio use the program.

2.8 Five Measurable Human Factors
There’s intercommunication between user charatierigith the interface
design. Five measurable human factors could bedoted as early stage of design
interface because it helps to prevent design desy$ailure. Five measurable human
factors consist of:
1. Time to learn
Interface design that could be immediately knowrubgr. How long
user learn to use and doing some action to do b taak.
2. Speed of performance
Describe how long it takes to do set of tasks.
3. Rate of user error
Measure how many or which type error that userueety do a
mistake. A good system will have low rate of useom. conclude that user
could interact with program easily understand.
4. Retention of knowledge over time
Describing how well user remembering in severaletiirame, from
day-to-day, week-to-week, even month-to-month. Reia depends on how
many time users spend to use the program and fnegusf user open that
program and using it. When user often to use’lt, bt easier to use the
program.
5. Subjective satisfaction
Defining how user likes using the system. This aspmuld be
conducted as interview to user to know how usesfsation of the system
can be scale of satisfaction or free form (usecriles how their feel to use

this system).

32

2.9 Object Oriented Programming (OOP)

Object Oriented Programming (OOP) is designed fmru$ing on object
interact with another object and share informatiad communicate each other. OOP
is different with procedural programming, which gedural programming is focus
on writing logic step-by-step flow of execution.t3¥ data on OOP is used while
developer want to manipulating it or usage theytwtamse, logic statement of OOP
isn’t used for manipulating the data.

There’re several ways to defined Object OrienteayRrmming. OOP is focus
on improving analytics on object, the way to pragran OOP is look out everything
as an object. In contrast, procedural is focus tep-by-step execution. OOP is a
newer technology to help implement feature thatdhar develop on procedural
programming. It also flexible to be outlined anchadification on an object doesn’t
give huge impact to another.

Some benefits to use Object Oriented Programmin@R) rather than
Procedural Oriented Programming (POP):

* OOP is more realistic because of developer coulckvand imagine all of
real problem defined into an object.

» Decreasing number of redundant code and increasitemsibility for class.

* Understanding software is easier rather than POP.

 Data hiding concept of OOP help programmer to d®vekecure
programmable code which can’t access or altereahloyher parts of program.

* Interaction or communication between object is easiyer than POP

Object Oriented Programming provide great desigitepa to develop with.

There are 4 concepts of OOP based on Urdhwareshe:

* Object
To develop a program which could be web or desgtogramming, we need
to code properly. In OOP, code properly means ékigny is seen as an
object. Object contains private data that can beessed by authorized
method or operations.

* Class
Definitions and methods are presented on a Cldsss@onsists of distinct
object with attributes that can be shared of itorimation and certain

function which user could defined their method.

33

* Inheritance
Derived base class attributes and method to sudedasReusability is
powerful on inheritance because reusing base al&isisute which is is great
idea to reduce logic error even more reducing ed@cdime. Also, it helps to
reduce program complexity.

e Polymorphism
Polymorphism gives ability to programmer to ask theme operation,

variable, or object to different actual things lefiding different type forms.

2.10 Web Application

Web application is a web that easily accessed teyriat protocol and opened
with web browser. Web application has a contenhsag: text information, color,
picture, furthermore videos (Reina, 2010, p. 6&2hazon online store is one of the
examples of web application, user can do anythsugh as searching products,

comparing price, also buy the products online.

2.11 RESTful

Representational State Transfer (REST) is an ad¢tocreate web service. It
based on web architecture (Flanders, 2009, p. ESTRusing HTTP protocol to
communicate with data. REST client will access ESR server resources which the
resources will be differentiate with Universal Resxe Identifiers (URIS). There’s
several type of REST result such as: text, XML,JBON. REST usually used to
interexchange data between system, and its database
HTTP protocol that is used on REST API:

« GET
Reading the resources from REST server
« POST
Creating new data into REST server
« PUT
Updating existing data on REST server
e DELETE

Deleting existing data on REST server

34

2.12 JSON Data

JavaScript Object Notation or JSON is a mediumafgtorage and changeable
data which is easily to read by person. JSON hasgasi functionality like XML to
represent the data (Munzert, Rubba, Mei3ner, & hMyh2015, p. 68). JSON is an
independent language that created based on Japb$cagramming language.
JSON data could be decomposed with a lot of progra language. JSON cover
an object by “{* and “}” symbols.

{"indy movies" :[

1

2 {

3 "name" : "Raiders of the Lost Ark",

4 "year" : 1981,

5 vactors" : {

6 "Indiana Jones": "Harrison Ford",

7 "Dr. René Bellog": "Paul Freeman"

8 }ii

9 "producers": ["Frank Marshall", "George Lucas", "Howard Kazanjian"],
10 "budget" : 18000000,

11 "academy_award ve": true
12 |
13 {

14 "name" : "Indiana Jones and the Temple of Doom",
15 "year" : 1984,

16 "actors" : {

17 "Indiana Jones": "Harrison Ford",

18 "Mola Ram": "Amish Puri"

19 }:

20 "producers": ["Robert Watts"],

21 "budget" : 28170000,

22 "academy award ve": true

23 }, - -

24 {

25 "name" : "Indiana Jones and the Last Crusade",
26 "year" : 1989,

27 "actors" : {

28 "Indiana Jones": "Harrison Ford",

29 "Walter Donovan": "Julian Glover"

30 ¥

31 "producers": ["Robert Watts", "George Lucas"],
32 "budget" : 48000000,

33 "academy award ve": false

34 1

Figure 2.12 JSON result
(Source: Designing an MVC Model for Rapid Web Applcation Development,
2014, p. 69)

35

2.13 Model-View-Controller (MVC)

MVC is a concept to produce efficient way to depahy a program by
separating user interface with its controller uhdeg information. There are 3
different layers which are: model, view, and colro Maintenance of an
application will be implemented faster because eammponent of layers can be
developed and updated separately without givinggehmpact to another.

Model in MVC represent real data or an associatibits business process that is
used in an application. There are 2 types of Model:
1. Passive model
A controller manipulates exclusive model, which meaontroller change or
update model and inform to view if model has bekanged and has to be
refreshed.
2. Active Model
When a model is changing its state without corgrollt happens when the
other object change data and view will be changed t
View in MVC is getting data from model and represtére model as user
interface. View is an output or result that will bederstandable by user to operate
with.Controller in MVC represent getting and traxislg input and request on model

or view. Controller has responsibility to call meththat will change the model and

=

will be presented into view.

/

N

request

HTTR CU, etc.
response
Controller HTML RSS, XML,
JSON, etc.

demand // data \
Mode View
Database, WS, etc. Templates, layout

Figure 2.13 Model-view-controller scheme
(Source: Designing an MVC Model for Rapid Web Applcation Development,
2014, p. 1174)

36

Model View Controller easily implemented as Fig@ré&3. Firstly, requesting
HTTP from controller. Controller as a bridge betwarodel and view, it asking a
model to know the database. When database or maxtekeved, controller is

working on it and displaying as a view which vieautd be seen by user.

2.14 Android

Android is operating system for mobile which deysd by Google. Android
was released to public as commercial on Septent)e2@8. This is the first version
of android is Android 1.0. Android operating systesrbased on Linux kernel and
the other open source software for touchscreercesvAndroid is developed written
in Android software development kit (SDK) which f{grogramming in java
programming language in common and combined witG+@/ In 2017, Google
announced support Android development with Kotliaggamming language.

Briefly, Android is developed by 4 people: Andy RubRich Miner, Nick
Sears, and Chris White in California. Andy Rubin dse who thinks to start
developing the OS for digital cameras. Likely, thiéynk of future which is of
potential developing on smarter mobile devices fififty facing their teams to
develop Android until in July 2005, Google acquirsddroid Inc. $50 million. So,
they are joined Google as part of acquisition arakenAndroid become greater.
Android was introduced first time on an HTC-mad&1®bile device. Which that is a

stepping stone for Android to develop significaritigter based on their version.

2.14.1 Android Version

* Android 1.0
This version is the first version which releasedSaptember 23,2008
introduced Android market (Google Play Store), aget on home
screen, and notifications, etc.

e Android 1.5 (Cupcakes)
This version has several new features such asadgboto to Picasa,
upload videos to YouTube, support third-party \aitkeyboard with

text prediction, etc.

37

Android 1.6 (Donut)

The big update of this version is: quick search bt allows user to
search easily than ever, support for CDMA netwaaldjusting with
display sizes on Android devices.

Android 2.0 (Eclair)

Introducing Google Maps navigation, HTML5 browdeck screen, etc.
Android 2.2 (Froyo)

Introducing USB tethering and Wi-Fi hotspot funatadity, PIN lock
screen, etc.

Android 2.3(Gingerbread)

Introducing support for front-camera, enhanced textut on virtual
keyboard, download manager which gives ability teeruto access
downloaded file easily.

Android 3.0 (Honeycomb)

Honeycomb focus on tablet user. Support multi-cqnecessors,
optimized holographic user interface for tablelpwlto encrypt all user
data.

Android 4.0 (Ice Cream Sandwich)

Updating for virtual button and refined the inteda Also adding small
feature as data usage analysis, face unlock, shemment with NFC.
Android 4.1 (Jelly Bean)

Introducing Google Now which give information assmal assistance,
actionable or expandable notification, and accawitching (multiple
user on 1 device).

Android 4.4 (KitKat)

Introducing Voice: Ok Google which is to do specifiction based on
what user said. Improving the design based on wet do or wanted.
Android 5.0 (Lollipop)

Introducing material design, which makes user teigae their device
easily. Ability to do multiscreen on different degs and allow user to see
the notification on lock screen.

Android 6.0 (Marshmallow)

38

Updating personal assistance without leaving whatwser doing right
now, give user permission to share with applicataond optimize battery
life.

Android 7.0 (Nougat)

Multi-windows support and floating window, updatimgtification that
will be presented from screen to screen

Android 8.0 (Oreo)

Introducing a modular architecture for hardware emako adapt easier
and faster with update version. Giving ability teeuto do multi-tasking
features.

Android 9.0 (Pie)

Replacing single pill for 3 button setups on botteareen of Android.

Redesign and refined feature of Android itself.

2.14.2 Android Architecture

Android operating system is divided into 5 sectigth 4 main layers.
* Linux Kernel
This layer contains all important aspect of hargwand handle
networking very well on device drivers.
* Libraries
Encompasses java-based library that to help develapobile
apps completely work.
On this layer, there’s Android Runtime which Javartial
Machine to optimized Android, so help developer voite
application on java programming language.
* Application Framework
Provide higher level service from java classes.ir@ability to
developer to use the service of this application.
» Application
A product that has been developed and installed.

39

Applications

Native Android Apps Third Party Apps

Application Framework
Activity Window Notification View XMPP
Manager Manager Manager System Service

Location Package Resource Content Telephony
Manager Manager Manager Providers Manager

Libraries

Android Runtime
SQLite WebKit OpenGL ES

FreeType Surface Media Libraries
- e Framevork Dalvik Virtual
Machine
SsL SGL libc

Linux Kernel

Display WiFi Audio Binder (IPC) Bluetooth
Driver Driver Drivers Drivers Driver

Camera Memory Flash Memory
Driver Driver

Figure 2.14 Android operating system architecture

(Source: Android Developers)

2.14.3 Android Activity Lifecycle

Activity in Android is a fundamental part platforon application
model. Activity represents a single screen in Amdirorhis activity will
handle of User Interface components or widgetsagtivity will go through

several number of states.

Activity
launched

v

onCreate()

v

onStart() -« onRestart()

‘ A
User navigates A
to the activity onResume()

l v
App process Activity
killed running

|
Another activity comes
nto the foreground

A

User retuimns
+ to the activity

Apps with higher priority
need memory onPause()
|

The activity is
no longer visible

User navigates
+ to the activity

onStop() J

|
The activity is finishing or
being destroyed by the system

v

onDestroy()

:

Activity
shut down

Figure 2.15 Android activity lifecycle

(Source: Android Developers)

onCreate() method is called first time when adfivitas launched. It will
handle creating views and binding data.

onStart() method is called after onCreate() metho@fter an activity was
restarted. This state, activity will be show inteefground and visible to user.
onResume() method is called when user interactiit waurrent activity.
Current activity will be the top of stack activignd receive all user input.
onPause() method is called when the activity ismin focus anymore. The
activity isn’t the top stack of another activitidshappens when the activity
isn’t visible to user, or partially visible but istthe main focus.

onStop() method is called after onPause() methottiwthe activity isn’t
longer visible to user. It may happen when thevagtis being destroyed,

existing activity entering resumed state, or netivdyg is starting.

41

onRestart() method is called when onStop() metsad going to be destroy
but prior to start state. It happens when user Wwanavigate to the activity.
onDestroy() method is the final state of activifgdycle. It will be called if

the activity is finish or being destroy by the syst

