

7

CHAPTER 2.

LITERATURE REVIEW

2.1 Software Engineering

Software Engineering is one kind of type engineering that have some several

aspects which included a process or method to do and tools to build high quality

computer-based system/ computer-software with a specified time (Pressman &

Maxim, 2015, p. 14).

According to Pressman, Software Engineering have 4 layers:

1. Quality Focus Layer

Software Engineering should be focus on quality of software,

especially in organizational customer quality requirements, developer quality

requirements, users’ requirements, etc. best practice of quality focus layer is

when a software that meet the all of the requirements needed or meet its

specification.

2. Process Layer

Process layer is a foundation of Software Engineering. Process Layer

become a connector all of the other layers which could increasing rate of

finishing the software on time that has been specified before with proper time

spent.

3. Methods Layer

Methods Layer act as technical guidance of Software Engineering.

This layer covers several main aspects which are: requirements analysis,

design modeling, program constriction or coding, testing, and maintenance

phase of software development.

4. Tools Layer

Tools Layer acts as supporter which provides functionality to process

and method layers. Some combination of tools could become referred to

Computer-Aided Software Engineering (CASE). CASE combines software,

hardware, and database for development.

8

2.2 Software Process Framework

Software process is one kind of the most important things to develop software.

Process could be described as collection of activities and action that perform some

work to create something (Pressman & Maxim, 2015, p. 16). Process frameworks

establish a foundation to create software from nothing to kind of finished product.

Process framework for software engineering could divide 5 main activities:

1. Communication

This step is critical aspect of starting a software process because in this

step communication is one to understand between customer (individuals or

stake holder) what is the requirements to help define all of the feature and

function of a software.

2. Planning

Planning could become a guideline for creator to map all of possibility

technical task to be conducted, what risk will be happened, and all of the

resource that are needed to develop into next step.

3. Modeling

Creating a basic sketch of the software, taking a big picture to implement a

function on software and its better when the model or sketch is more detail.

4. Construction

Implementing of modeling activity as a real program with its all functionality.

5. Deployment

The software is ready to deliver to customer although the program is partially

finished or completely finished. After deployment, the software could be

revised or getting feedback by customer.

2.3 Software Development Life Cycle (SDLC)

Software Development Life Cycle (SDLC) is used in software engineering to

describe all of process of software development. Applying activities and defines

process flow with some different model to implement.

2.3.1 Spiral Model

Spiral model is originally proposed by Barry Boehm which is an

evolutionary of iterative prototyping. Spiral model provides for fast

development to enhance complete version of the software (Pressman & Maxim,

2015, p. 47). Adaptation is one of the keys for spiral model. It can be adapted

9

throughout entire development process. Spiral model focus on risk-driven

process model that guide multi-stakeholder to engineer software system. One

cyclic approach for growing system could decreasing degree of risk. Spiral

model also part of evolutionary process models, which is produce an

increasingly more complete development version of software for each iteration.

Figure 2.1. Spiral Model

(Source: Software Engineering, Pressman & Maxim, 2015, p.47)

There are 4 main process of Spiral Model:

1. Communication

Communication is the beginning to identify the requirements. In this

process, requirement gathering is the most important part, identify all

aspect of requirements. From business sight, what the main point of

developing a project and determine the cost, time, and resources for each

iteration.

2. Modelling

Analysis all information that gathered from communication process.

Considering risk process and determine alternative for better solution.

Modelling also considers about design. Creating the design that help to

build a software such as: prototyping, which help to give a big picture of

software would be.

3. Construction

Implementation of modelling process that create a bunch of code which

perform as it modeled. All of functionality has to be based on design that

10

has been created before. Construction also consists of test which test,

verify, and validate the code. Test is important to make sure that the code

is working well on usage.

4. Deployment

Deployment process is when all of functionality that gathered from

communication to construction is deliver to the client/customer. In this

case, feedback from customer is the most important part to revise or

construct for the next cycle of iteration.

Spiral model starts its process clockwise direction, start from

communication process framework and beginning at the center. First circuit of

spiral model give earlier stage of result development such as: product

specification which is planning result to adjust cost and schedule based on

customer. After the process, it will adjust all of the number of iterations required

to complete develop a software. Earlier stage of iterative spiral model could be

much like a prototype and the next iteration could become more complete

module version of the system that will be engineered.

Spiral model can adapt throughout the life of the computer software. First circuit

represent a concept of development software system project. Each iteration

makes perfect of the module inside the software system. Continuous iteration of

spiral model could be a process to enhancement of software system of product

enhancement project.

The most flexible and it realistic model of SDLC because it takes from

the iterative model combined by structured development. This model considering

all of the risk analysis that could be happen. Software development pass through

four stage over and over, make a spiral condition until the process is finished.

There’s several advantage using spiral model as SDLC because it adapts easily to

evolve of process progress. Developer and customer will react better to risk of

evolutionary level. Spiral model using prototyping as risk reduction and also

maintain the systematic of development step by step approach. It could act as

consideration of technical risk, so the problem of software system development

could be predicted and not become problematic.

Beside its advantage, the other hand, spiral model also has disadvantage

especially relation with customer. If, the project development is in contract

situation, it demands risk assessment expertise and these experts will consider for

11

success of development. Major risk will occur if expertise fails to determine the

risk. Another thing, if development is fixed-budget. It’s hard to determine the

cost because each circuit is completed, project cost should be revised and

revisited. (John, Jackson, & Burd, 2012)

2.4 Database Management System

Database Management System is a software system that helps people to define,

create, maintain, and control all of access to database (Connolly and Begg, 2010,

p.66). DBMS is a software that connecting user’ database with application program.

It also helps the programmer access and use the same data while managing data

integration. DBMS provide several features to use:

1. Data Definition Language (DDL)

DDL gives an ability to user for creating variable and its data type. It also

helps to design structure of database that will be use for the next step.

2. Data Manipulation Language (DML)

DML gives some ability to user to perform CRUD. CRUD stands for Create,

Read, Update, and Delete data from database.

3. Data Control Language (DCL)

DCL gives ability to user for dealing about permissions and other controls of

database system

4. Transaction Control Language (TCL)

DCL gives ability to user for dealing transaction within database.

2.5 Entity-Relationship Diagram (ERD)

Entity-Relationship Diagram (ERD) is a model analysis of a data entities,

attributes, and the relationships among the data entities that needs to store

information in data storage (Satzinger, 2012, p. 97). Actually, ERD similar to

Unified Modeling Language (UML) but have their own functionality.

ERD has main point of usages which are to determine database design where

the requirements that have gathered implement to ERD focusing what are database

likely to be displayed. ERD also could help analyzing the problem more convenience

because of we know the basic database or the database design of the program.

According to Satzinger, ERD has several important components to know. Rectangle

represent data entities and lines between rectangles show the relationship between

12

data entities. Symbols on a line have a specific meaning to describe what the

relationship between entities is.

Rectangle that represent a data entity have some properties on it. Data entity

is an object that are break down into smallest part. Each property or attribute is used

to represent data entity. Example from above, Customer data entity. Customer has

several properties such as: cust number, name, bill address, home phone, office

phone. Beside cust number, there’s a symbol of PK, which means Primary key. Each

data entities should have a Primary key for determine its uniqueness. Primary key is

critical concept to have for ERD, without it, ERD will become complicated and

confusing because it makes hard to determine which is foreign key and at the end,

relational database concept will not work.

Figure 2.3 Cardinality symbols of ERD relationships

 (Source: Systems Analysis and Design, Satzinger, 2012, p. 99)

Figure 2.2 ERD for bank with many branches

(Source: Systems Analysis and Design, Satzinger, 2012, p. 100)

13

This is a symbol of relationship for each rectangle. A left line with a strip on

it represents exactly one or have to be one in a relationship. A right line with circle

and crow’s feet represent zero or more relationship, which is it could be nothing, one,

or more than one of data entities.

Figure 2.4 Cardinality symbols of ERD relationships 2

 (Source: Systems Analysis and Design, Satzinger, 2012, p.99)

For this left line with strip and circle on it symbolize that zero or one

relationship, which is could be nothing at all or one relationship of data entities. A

right side of line with a strip and crow’s feet on it represent one or more relationship

of data entities, zero or nothing is not allowed for data entities relationship.

2.6 Unified Modeling Language (UML)

UML is based on Object Oriented concepts that doesn’t designed for one

particular Object-Oriented Programming Language. UML can be used for all

software development from various condition such as: complexity, real time, volume,

etc. (Seidl, Scholz, Huemer, & Kappel, 2015, p. 14).

In UML, a model is represented into diagram. These diagrams will show users use

the functionality and showing the structure of the system development without

specifying detail concrete implementation (Seidl, Scholz, Huemer, & Kappel, 2015,

p. 15).

In general, UML define to two major kind of UML diagram: Structure

diagram and Behavior diagram. Structure diagram explain static structure, which

describe all of elements is related with each other and represent meaningful concept

of the system. The other hand, behavior diagram explains the details of behavior

which affect how states of object changer over time.

14

2.6.1 Use Case

Use case is a fundamental concept of Object-Oriented Programming

that defines all of possible usage scenarios. Describing in simple method that

cover who using the system, what is being described on system, and what

action that user will be able to do with the system. In shorthand, use case will

describe all of the functionality of the system developed.

Table 2.1 Notation elements for use case diagram

No Symbols Description

1

A use case describing what is the

function is expected to perform. It

described as ellipse with simple and

clear action description in it.

2

Automation boundary is the

boundary that separate between use

case and actor. Separate who will

operate the system and what system

ability to do with actor action.

Automaton boundary described as

vertically rectangle with title. Title

describes the name of system.

3

Stick figure represent an actor or

user in the use case diagram. Actor

or user represent the actual person

who using the system. A stick figure

should be named to know who is

exactly is the user of the system,

could be customer, administrator, or

etc. User or actor should always

outside from automation boundary of

15

No Symbols Description

the system. An actor isn’t always a

human, but non-human also such as

e-mail server.

4

A line is the most common

relationship that represent or

connecting between user or actor

with the system on specific action or

case.

5

An arrow line symbolizes as

generalization or specialization.

Could be used between actors or

between use case. Sub actor or sub

use case is inherit from its parent,

and has another ability to do /

perform something special.

6

A dashed arrow with <<includes>>

is a relationship between cases,

which is original case is not

complete without included one.

<<includes>> relationship. It defines

that from A use case is should be

executed to perform B use case

7

A dashed arrow with << Extend >>

is a relationship between cases that 1

use case is optionally dependently on

another use case. Which means

extended use case is could be done or

not done at all.

16

Figure 2.5 Relationship in use case diagram

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.33)

Explanation:

1. Use case A includes use cases of E and D. Actor O perform 3 uses

case. If actor O perform use case A, that means use cases E and D

should be executed too.

2. Use case H inherits from use case C and actor L should be perform

use case H by doing use case C. Actor N and M has ability to do the

same as L does because of N and M are the generalization of L which

is has same ability to perform C.

3. Use case J is inherit from use case B. Actor O could directly access to

perform B and J use cases. In this case, two actors in the role O are

involved on execution of J.

4. The use case F inherits from the use case G. As a result of the

inheritance relationship, an actor N is involved in the execution of use

case F. For F, an association with the actor L is also modeled directly.

Therefore, an actor N and, due to the inheritance relationship of the

actors L, N, and M, either an actor L or an actor M or an additional

17

actor N is involved in the execution of F. Use case I extends use case

F because use case F inherits from use case G and as I extends use

case G, relationship will be passed on to F.

5. Use case I extends use case F because use case F inherits from use

case G and as I extends use case G, relationship will be passed on to F.

6. Use case J extends the use case H because relationship of inheritance

from B to J and from C to H.

2.6.2 Use Case Description

Use case description is a use case that ensure to describe use cases as

clear and concise as possible. It also helps to improve comprehension of

system and clearly described statement for user’s requirements.

Alstair Cockburn presents structured that has to be there on use case

description:

1. Name

2. Short description

3. Precondition � prerequisite for successful execution

4. Postcondition � system state after successful execution

5. Error situation � error relevant to problem domain

6. System state on occurrence of an error

7. Actor that communicate with the use case

8. Trigger � event that start the use case

9. Standard process � individual step to be taken

10. Alternative process � deviation from standard process

18

Table 2.2 Use case description for Reserve lecture hall

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.36)

This description shows of the use case Reverse lecture hall in a

student administration system. All of condition on this use case is considered.

Starting from the process, alternative process, error situation, and

postcondition occur. For example, it could be possible to reserve a lecture

hall where an event is already taking place—this makes sense if the event is

an exam that could be held in the lecture hall along with another exam,

meaning that fewer exam supervisors are required (Seidl, Scholz, Huemer, &

Kappel, 2015, p. 36).

2.6.3 Activity Diagram

Activity diagram is a diagram that describe a procedural processing of

a system. Which means, explain all about control flow and data flow step by

step that required to implement an activity (Seidl, Scholz, Huemer, & Kappel,

2015, p. 141).

19

Table 2.3 Notation elements for activity diagram

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.165)

20

Table 2.4 Notation elements for activity diagram part 2

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.166)

21

Figure 2.6 Activity diagram “Issue student ID”

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.163)

This is activity diagram for Issue Student ID use case. From the

beginning of initial state symbol, Student start to request ID, then Employee

creates ID for student. Student fill out the ID and giving all of the document

required and the ID to employee. Employee will check the remaining

documents and hand over back the document. If document is not appropriate,

22

the activity will be ended, but if it’s ok, employee will check the ID. The ID

will be check either ok or not ok. If it not ok, ID will be destroyed and re-

create the ID, otherwise employee will stamp the ID. Then student will

receive semester label and affix the label. After affix the label, it will end the

process of activity diagram.

2.6.4 Class Diagram

Class diagram is static structure that describes the elements of the

system and its relationships between them (Seidl, Scholz, Huemer, & Kappel,

2015, p. 49). Class diagram could help creating conceptual view of the

system. In class diagram, there’s several aspects that is important to recognize.

An object that has several attributes and methods become a class and

relationships between classes.

Figure 2.7 Representation of a class and its characteristics

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.53)

Table 2.5 Visibilities

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.59)

23

From figure 2.7 section A, defines an object that become a title of

each class. Section B shows each class has several attributes or properties of

and methods that defines of Course class. Section C shows the complete of

one class diagram, which defines all of attributes, method, data type, return

type, and access modifier.

Associations is relationships between classes model. Communication

between classes occur defined as several concept that will be describes below.

24

Table 2.6 Notation elementes of the class diagram

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.84)

25

Figure 2.8 Class diagram of the information system of a university

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.80)

This is a class diagram for information system of university could be

described as:

1. Administrative employee class and Research Associate class inherit

from abstract class of Employee.

2. Employee abstract class leads zero or one faculty, otherwise faculty is

leaded by 1 employee.

3. Research associate class is part of institute that if institute was deleted,

related instances of Research Associate doesn’t have to be deleted.

4. An Institute class is part of faculty, which mean if there’s no faculty

class, Institute class will be deleted also because of its composition.

5. Lecturer class inherit from Research Associate class. Lecturer teaches

one or more courses and course will be taught by 1 or more lecturer.

26

6. Research Associate class has zero or more Project class, otherwise a

project has 1 or more Research Associate class.

7. There’s association class called Participation class between Research

Associate class and Project class which more detail description of an

association class.

2.6.5 Sequence Diagram

Sequence diagram describes kind of interaction between objects with

full specific task. It will describe like a readable flow or chronological order

of information or message. Sequence diagram contains several main points:

lifeline that shows time occurrence to interact or communicate with other,

types of massage (synchronous, asynchronous, response massage, and create

massage). Chronological information usually starts from top to bottom, but

with help of controller structure, it will enable to sequence diagram to control

the interaction.

Figure 2.9 Type of lifelines

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.109)

Each rectangle has their meaning. In general, rectangle plays their

important role as an actor or class name. Expression indicates the name of the

role and the class of the object is connected with the lifeline. Semicolon on

the name inside the rectangle can be omitted if class isn’t admitted.

27

Figure 2.10 Structure of a sequence diagram

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.110)

Sequence diagram database access has 2 class or role: Application and

Database. Application and Database have their lifeline with object activation.

Active object is occurred when application or database is interacting each

other, whether it send an event or receive an event.

28

Table 2.7 Notation elements for the sequence diagram

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.140)

29

Figure 2.11 Sequence diagram

(Source: UML@Classroom, Seidl, Scholz, Huemer, & Kappel, 2015, p.137)

This is an example of login process sequence diagram. There are 3

interaction partners where involved in the interaction: student, E-learning

system, and the database. When student want to login into the system, student

send a massage or input their credential into the E-learning system. The system

will check the credential by querying database. If the data exist it will response

verified access to the system and giving a response to user if their credential is

verified by system. Student will be able to do into the next step. In this case,

the sequence diagram isn’t considered when student input the wrong credential.

2.7 Eight Golden Rules

Eight Golden rules is a standard rule that created by Shneiderman to describe

about planning or analysis great interactive design of software program. According

Shneiderman, A system that has interactive design could help productivity of user,

frustation free UI, and user-friendly. Which is, these components help user to

understand better about the software an knowing more deeply about it. These are

eight golden rules:

1. Strive for consistency

Consistency is the important part for user to know each page or

several group of pages that don’t make user confuse to use. For example, the

30

display, color choices, font usage, location of attributes that connecting page

to page.

2. Cater to universal usability

Interface designer has to know about all of user who use this program,

calculating all of the possibility who will be use this program from

background, age, beginner, expert, and others. After knowing all of that

aspect, interface designer has ability to develop better design, for example

give a multiple choice of language inside the program, giving shortcut for

people who expert in this software field.

3. Offer informative feedback

Informative feedback happens when a user interacting with the

program, and the program is responding to user action. Respond from the

program could be a message such as: success, failed, warning, etc. But, in

several cases, responds also could be as interchange of page. These responds

give user ability to know when his/her action is accepted by program.

4. Design dialogs to yield closure

Creating step-by-step action to achieve the target. Similar to offer

informative feedback but it gives an ending target that user has accomplished.

Grouping beginning action, mid process, and ending action has been

organized easily to be aware by user.

5. Prevent error

Design all possibility of program that won’t meet error, bug, or crash.

Error could be disaster for a program, because it doesn’t work well what it

should. Also, when user which either beginner or expert doing something

wrong in the process to program, designer has to know how to prevent error

by giving a clue to user for example. Email field for example, it should

contain “@” symbol or has to be confirmed, if user doesn’t put the correct

format or account, program has to respond that user has made a mistake.

6. Permit easy reversal of actions

Reversal of action could be described as when user want to cancel to

do something, program has ability to back to previous action, similar to

“undo” function. For example, user create new transaction of buying product,

at several time, user doesn’t want to buy and want to cancel the transaction.

So, program has to have ability to cancel the transaction.

31

7. Support internal locus of control

A system that has been created which has ability to customize by user.

User has access to control anything in that program. So, user experience

valuation could be increased based on customizable program.

8. Reduce short-term memory load

Giving user to use program easier when user giving input to system.

So, input from user could be stored in program, and also give a menu that’s

not too complex, because it will give user confusion to use the program.

2.8 Five Measurable Human Factors

There’s intercommunication between user characteristic with the interface

design. Five measurable human factors could be introduced as early stage of design

interface because it helps to prevent design or system failure. Five measurable human

factors consist of:

1. Time to learn

Interface design that could be immediately known by user. How long

user learn to use and doing some action to do 1 main task.

2. Speed of performance

Describe how long it takes to do set of tasks.

3. Rate of user error

Measure how many or which type error that user frequently do a

mistake. A good system will have low rate of user error, conclude that user

could interact with program easily understand.

4. Retention of knowledge over time

Describing how well user remembering in several time frame, from

day-to-day, week-to-week, even month-to-month. Retention depends on how

many time users spend to use the program and frequency of user open that

program and using it. When user often to use it, it’ll be easier to use the

program.

5. Subjective satisfaction

Defining how user likes using the system. This aspect could be

conducted as interview to user to know how user satisfaction of the system

can be scale of satisfaction or free form (user describe how their feel to use

this system).

32

2.9 Object Oriented Programming (OOP)

Object Oriented Programming (OOP) is designed for focusing on object

interact with another object and share information and communicate each other. OOP

is different with procedural programming, which procedural programming is focus

on writing logic step-by-step flow of execution. Set of data on OOP is used while

developer want to manipulating it or usage they want to use, logic statement of OOP

isn’t used for manipulating the data.

There’re several ways to defined Object Oriented Programming. OOP is focus

on improving analytics on object, the way to program on OOP is look out everything

as an object. In contrast, procedural is focus on step-by-step execution. OOP is a

newer technology to help implement feature that hard to develop on procedural

programming. It also flexible to be outlined and a modification on an object doesn’t

give huge impact to another.

Some benefits to use Object Oriented Programming (OOP) rather than

Procedural Oriented Programming (POP):

• OOP is more realistic because of developer could work and imagine all of

real problem defined into an object.

• Decreasing number of redundant code and increasing extensibility for class.

• Understanding software is easier rather than POP.

• Data hiding concept of OOP help programmer to develop secure

programmable code which can’t access or altered by another parts of program.

• Interaction or communication between object is easy rather than POP

Object Oriented Programming provide great design pattern to develop with.

There are 4 concepts of OOP based on Urdhwareshe:

• Object

To develop a program which could be web or desktop programming, we need

to code properly. In OOP, code properly means everything is seen as an

object. Object contains private data that can be accessed by authorized

method or operations.

• Class

Definitions and methods are presented on a Class. Class consists of distinct

object with attributes that can be shared of its information and certain

function which user could defined their method.

33

• Inheritance

Derived base class attributes and method to subclasses. Reusability is

powerful on inheritance because reusing base class attribute which is is great

idea to reduce logic error even more reducing execution time. Also, it helps to

reduce program complexity.

• Polymorphism

Polymorphism gives ability to programmer to ask the same operation,

variable, or object to different actual things by defining different type forms.

2.10 Web Application

Web application is a web that easily accessed by internet protocol and opened

with web browser. Web application has a content such as: text information, color,

picture, furthermore videos (Reina, 2010, p. 682). Amazon online store is one of the

examples of web application, user can do anything, such as searching products,

comparing price, also buy the products online.

2.11 RESTful

Representational State Transfer (REST) is an action to create web service. It

based on web architecture (Flanders, 2009, p. 5). REST using HTTP protocol to

communicate with data. REST client will access to REST server resources which the

resources will be differentiate with Universal Resource Identifiers (URIs). There’s

several type of REST result such as: text, XML, or JSON. REST usually used to

interexchange data between system, and its database.

HTTP protocol that is used on REST API:

• GET

Reading the resources from REST server

• POST

Creating new data into REST server

• PUT

Updating existing data on REST server

• DELETE

Deleting existing data on REST server

34

2.12 JSON Data

JavaScript Object Notation or JSON is a medium for a storage and changeable

data which is easily to read by person. JSON has similar functionality like XML to

represent the data (Munzert, Rubba, Meißner, & Nyhuis, 2015, p. 68). JSON is an

independent language that created based on JavaScript programming language.

JSON data could be decomposed with a lot of programming language. JSON cover

an object by “{“ and “}” symbols.

Figure 2.12 JSON result

(Source: Designing an MVC Model for Rapid Web Application Development,

2014, p. 69)

35

2.13 Model-View-Controller (MVC)

MVC is a concept to produce efficient way to developing a program by

separating user interface with its controller underlying information. There are 3

different layers which are: model, view, and controller. Maintenance of an

application will be implemented faster because each component of layers can be

developed and updated separately without giving a huge impact to another.

Model in MVC represent real data or an association of its business process that is

used in an application. There are 2 types of Model:

1. Passive model

A controller manipulates exclusive model, which means controller change or

update model and inform to view if model has been changed and has to be

refreshed.

2. Active Model

When a model is changing its state without controller. It happens when the

other object change data and view will be changed too.

View in MVC is getting data from model and represent the model as user

interface. View is an output or result that will be understandable by user to operate

with.Controller in MVC represent getting and translating input and request on model

or view. Controller has responsibility to call method that will change the model and

will be presented into view.

Figure 2.13 Model-view-controller scheme

(Source: Designing an MVC Model for Rapid Web Application Development,

2014, p. 1174)

36

Model View Controller easily implemented as Figure 2.13. Firstly, requesting

HTTP from controller. Controller as a bridge between model and view, it asking a

model to know the database. When database or model achieved, controller is

working on it and displaying as a view which view could be seen by user.

2.14 Android

Android is operating system for mobile which developed by Google. Android

was released to public as commercial on September 23, 2018. This is the first version

of android is Android 1.0. Android operating system is based on Linux kernel and

the other open source software for touchscreen devices. Android is developed written

in Android software development kit (SDK) which is programming in java

programming language in common and combined with C/C++. In 2017, Google

announced support Android development with Kotlin programming language.

Briefly, Android is developed by 4 people: Andy Rubin, Rich Miner, Nick

Sears, and Chris White in California. Andy Rubin is one who thinks to start

developing the OS for digital cameras. Likely, they think of future which is of

potential developing on smarter mobile devices. Difficulty facing their teams to

develop Android until in July 2005, Google acquired Android Inc. $50 million. So,

they are joined Google as part of acquisition and make Android become greater.

Android was introduced first time on an HTC-made T-Mobile device. Which that is a

stepping stone for Android to develop significantly faster based on their version.

2.14.1 Android Version

• Android 1.0

This version is the first version which released on September 23,2008

introduced Android market (Google Play Store), a widget on home

screen, and notifications, etc.

• Android 1.5 (Cupcakes)

This version has several new features such as: upload photo to Picasa,

upload videos to YouTube, support third-party virtual keyboard with

text prediction, etc.

37

• Android 1.6 (Donut)

The big update of this version is: quick search box that allows user to

search easily than ever, support for CDMA network, adjusting with

display sizes on Android devices.

• Android 2.0 (Eclair)

Introducing Google Maps navigation, HTML5 browser, lock screen, etc.

• Android 2.2 (Froyo)

Introducing USB tethering and Wi-Fi hotspot functionality, PIN lock

screen, etc.

• Android 2.3(Gingerbread)

Introducing support for front-camera, enhanced text input on virtual

keyboard, download manager which gives ability to user to access

downloaded file easily.

• Android 3.0 (Honeycomb)

Honeycomb focus on tablet user. Support multi-core processors,

optimized holographic user interface for tablet, allow to encrypt all user

data.

• Android 4.0 (Ice Cream Sandwich)

Updating for virtual button and refined the interface. Also adding small

feature as data usage analysis, face unlock, sharing content with NFC.

• Android 4.1 (Jelly Bean)

Introducing Google Now which give information as personal assistance,

actionable or expandable notification, and account switching (multiple

user on 1 device).

• Android 4.4 (KitKat)

Introducing Voice: Ok Google which is to do specific action based on

what user said. Improving the design based on what user do or wanted.

• Android 5.0 (Lollipop)

Introducing material design, which makes user to navigate their device

easily. Ability to do multiscreen on different devices and allow user to see

the notification on lock screen.

• Android 6.0 (Marshmallow)

38

Updating personal assistance without leaving what are user doing right

now, give user permission to share with application, and optimize battery

life.

• Android 7.0 (Nougat)

Multi-windows support and floating window, updating notification that

will be presented from screen to screen

• Android 8.0 (Oreo)

Introducing a modular architecture for hardware makers to adapt easier

and faster with update version. Giving ability to user to do multi-tasking

features.

• Android 9.0 (Pie)

Replacing single pill for 3 button setups on bottom screen of Android.

Redesign and refined feature of Android itself.

2.14.2 Android Architecture

Android operating system is divided into 5 section with 4 main layers.

• Linux Kernel

This layer contains all important aspect of hardware and handle

networking very well on device drivers.

• Libraries

Encompasses java-based library that to help develop a mobile

apps completely work.

On this layer, there’s Android Runtime which Java Virtual

Machine to optimized Android, so help developer to write

application on java programming language.

• Application Framework

Provide higher level service from java classes. Giving ability to

developer to use the service of this application.

• Application

A product that has been developed and installed.

39

Figure 2.14 Android operating system architecture

(Source: Android Developers)

2.14.3 Android Activity Lifecycle

Activity in Android is a fundamental part platform on application

model. Activity represents a single screen in Android. This activity will

handle of User Interface components or widgets. An activity will go through

several number of states.

40

Figure 2.15 Android activity lifecycle

(Source: Android Developers)

onCreate() method is called first time when activity was launched. It will

handle creating views and binding data.

onStart() method is called after onCreate() method or after an activity was

restarted. This state, activity will be show into foreground and visible to user.

onResume() method is called when user interacting with current activity.

Current activity will be the top of stack activity, and receive all user input.

onPause() method is called when the activity isn’t main focus anymore. The

activity isn’t the top stack of another activities. It happens when the activity

isn’t visible to user, or partially visible but isn’t the main focus.

onStop() method is called after onPause() method which the activity isn’t

longer visible to user. It may happen when the activity is being destroyed,

existing activity entering resumed state, or new activity is starting.

41

onRestart() method is called when onStop() method isn’t going to be destroy

but prior to start state. It happens when user want to navigate to the activity.

onDestroy() method is the final state of activity lifecycle. It will be called if

the activity is finish or being destroy by the syst

