![]() 140
1
x
?
Index of Fit Distribusi Lognormal Time To Failure (TTF)
Tabel 5.11 Perhitungan Index of fit Distribusi Lognormal untuk TTF
Komponen Idler
i
t
i
x
i
=
ln(
t )
i )
F(t )
i )
y =
i =
z
i
x .z
i .z
i
2
x
i
z
2
i
1
144.08
4.9704
0.0565
-1.5853
-7.8794
24.7046
2.5131
2
172.92
5.1528
0.1371
-1.0935
-5.6344
26.5516
1.1956
3
232.83
5.4503
0.2177
-0.7798
-4.2504
29.7059
0.6082
4
286.33
5.6571
0.2984
-0.5290
-2.9929
32.0033
0.2799
5
305.50
5.7219
0.3790
-0.3080
-1.7625
32.7407
0.0949
6
372.92
5.9214
0.4597
-0.1012
-0.5995
35.0626
0.0103
7
380.00
5.9402
0.5403
0.1012
0.6014
35.2856
0.0103
8
381.83
5.9450
0.6210
0.3080
1.8312
35.3427
0.0949
9
403.83
6.0010
0.7016
0.5290
3.1748
36.0119
0.2799
10
454.33
6.1188
0.7823
0.7798
4.7717
37.4400
0.6082
11
538.25
6.2883
0.8629
1.0935
6.8760
39.5430
1.1956
12
552.08
6.3137
0.9435
1.5853
10.0090
39.8627
2.5131
S
4224.90
69.4809
6.0000
0.0000
4.1450
404.2547
9.4038
r
0.9668
?
Contoh perhitungan index of fit distribusi lognormal TTF komponen idler i = 1 :
x1
=
ln(t1 )
=
ln(144.08)
=
4.9704
F(t1
)
=
=
i
-
0.3
n
+
0.4
1
-
0.3
12 + 0.4
=
0.7
12.4
=
0.0565
y1
=
z1
=
F
-¹
[F(t
)
]
=
-1.5853
( diperoleh dari tabel F(z) )
x1
.z1 =
(4.9704
x
-
1.5853
)= -7.8794
2
=
(4.09704)²
=
24.7046
|